When you read you start with a,b,c. When you sing you start with do, re, mi. When you build you start with tension and compression

STRUCTURES UNIT

This is a unit that can be done by year 10,11 or 6th form from home over 6 weeks at your own pace if stuck all answers should be on the internet.

If you can watch this, You Tube Video First.

https://www.bing.com/videos/search?q=triangle+structures+kids&docid=6080414660 50708897&mid=1C8D1C332C64EB9871631C8D1C332C64EB987163&view=detail &FORM=VIRE

<u>SMY BOOKLET</u>

DESIGN TECHNOLOGY STRUCTURES INDEX Introduction

DTS 1 - ACTIVITY 1 Gumdrop Structures DTS 2 - 2 D structures ACTIVITY 2 Making beams DTS 3 - Towers ACTIVITY 3 The Communications Tower FUNFACTS 1 – Top 10 Tallest Buildings FUNFACTS 2 – Top 10 Tallest Towers DTS 4 – Domes ACTIVITY 4 The New Edge Disembers

The New Eden Biosphere Visitor Centre FUNFACTS 3 –Top 10 largest domes in history

DTS 5 – Bridges **ACTIVITY 5** The Bridge of the Future **FUNFACTS 4** – Top 10 longest Bridges DTS 6 – Observation wheels **ACTIVITY 6** The Millennium Wheel **FUNFACTS 5** – Top 10 observation wheels DTS 7 – ACTIVITY 7 Spaghetti Bridge Useful websites Useful vocabulary WORDSEARCH STRUCTURES -Words **CROSSWORD** Thanks to

How many books do you think gumdrop domes can support?

- 1. In your structure groups, use five gumdrops to connect five toothpicks in a ring. This is your base. (a)
- 2. Use two toothpicks and one gumdrop to make a triangle on one side of the base. Repeat this all around the base until you have five triangles (b)
- 3. Use toothpicks to connect the gumdrops at the tops of the triangles (c)
- 4. Push one toothpick into each of the top gumdrops. (d)
- 5. Use one last gumdrop to connect these toothpicks at the top (e)
- 6. How many domes do you think you will need to hold up a book?
- 7. Make a prediction, then build as many domes as you think you may need.
- 8. Now it's time to test out the strength of your domes. Arrange your domes, and carefully place a book on top. If your domes can support one book, then keep going.
- 9. How many books can your domes support?
- 10. Can you build your domes any taller?

This is what I learned

date.....

http://pbskids.org/zoom/activities/sci/gumdropdome.html

DT STUCTURES 2 - Investigating 2D Shapes - 1

All structures are made up of 2D shapes. Cut out and see how the shapes fit (tessellate) together triangles squares Is this shape strong? Is this shape strong?

DT STUCTURES 1 - Investigating 2D Shapes - 2

entagons	hexagons
s this shape strong?	Is this shape strong?

DT STUCTURES 2 - ACTIVITY 2 - Making beams from paper

date.....

We are going to be making some beams to build some 2 and 3D structures to test their strength You will need **Golden Rules** 3.Turn the A4 and A3 paper for Masking tape paper over construction and thread Tube rolling system • Only use good, Nuts and bolts the end undamaged (without tubes, rolled the tightly 1. Lay piece Make sure all • masking of paper on holes are tape punched the desk through accurately (landscape) the Only connect • tubes at their wooden 2. Tear off a ends, never in split dowel the middle! strip of 4. Roll up 0 0 Only use one masking until you nut on any tape and reach the one bolt! 5. Flatten both ends (in the same plane) and stick it right • Don't tighten masking punch a hole through. across top of the nuts until tape. This 6. This forms the basic beams from which you your paper, your structure will seal can make up different 2D shapes. is complete! sticky side the paper Use the nuts and bolts to attach them. down strip 7. Make up each of the 4 shapes and test how strong they are. $\langle 0 \rangle \rangle$ Which 2D shape is the strongest?

DT STRUCTURES 3 - Investigating Towers		date
Draw one of the towers	How has the tower been constructed? Draw the different sections	List the materials used to construct this tower
		Why do you think towers are often used in modern architecture?
When do you think this tower was first built?		

DT STUCTURES 3 - ACTIVITY 3 - The Communications Tower

INTRODUCTION

Your team of engineers are involved in a project to build a large oil refinery in a West African country. Torrential rain has caused flash floods and mudslides resulting in many deaths. All domestic services such as water and electricity have been totally disrupted and the lives of many people threatened..

Your team has been asked to design and construct a communications tower to carry a satellite dish. This will enable the emergency services to be directed more efficiently and save many lives. The tower must be at least 10m in height.

The only materials for the structures are scaffold tubes, each 3m long and connection fittings.

YOUR CHALLENGE

Your challenge is to design and build a model of the tower. This will be used to evaluate the design and help builders to complete the structure. Your model must be completed in**1 hour**

THE MODEL

Your model should be built to 1/10scale using the materials below: Your model should be:

- Stable it must be able to support itself without toppling
- **Strong** it must be able to support a 2kg weight hanging from its highest point

TOP TIPS

Make your structure out of

Start from the bottom and work

connected triangles.

Use only A3 struts.

((ເຈຼາ))

(((ຈາງ))

up ((()))

- Tall your tower must be at least 1m tall
- **Cost effective** it must use the least amount of materials

MATERIALS

- A4 and A3 paper
- Masking tape
- Tube rolling system
- Nuts and bolts
- Cord

DT STUCTURES 4 - The Communications Tower - My Evaluation

DT STUCTURES - FUN FACTS - 1 Top 10 tallest buildings

			I	
RANK	BUILDING, CITY	YEAR BUILT	STORIES HIGH	HEIGHT m
1.	<u>Taipei 101</u> , Taipei, Taiwan	2004	101	508
2.	2. Petronas Tower 1, Kuala Lumpur, Malaysia		88	452
3.	3. Petronas Tower 2, Kuala Lumpur, Malaysia		88	452
4.	Sears Tower, Chicago	1974	110	442
5.	Jin Mao Building, Shanghai	1999	88	421
6.	6. Two International Finance Centre, Hong Kong		88	415
7.	7. CITIC Plaza, Guangzhou, China		80	391
8.	Shun Hing Square, Shenzhen, China	1996	69	384
9.	Empire State Building, New York	1931	102	381
10.	Central Plaza, Hong Kong	1992	78	374
	OUR SCHOOL	1977	1	4
			•	

DT STUCTURES - FUN FACTS 2 - Top 10 tallest towers

	YEAR	Height
TOWER, CITY	BUILT	(m)
Canadian National (CN) Tower, Toronto	1975	553
Ostankino Tower, Moscow	1967	537
Oriental Pearl Tower, Shanghai	1995	468
Milad Tower, Tehran	2005	435
Menara Kuala Lumpur, Kuala Lumpur, Malaysia	1996	421
Tianjin TV Tower, Tianjin, China	1991	415
Central Radio & TV Tower, Beijing	1992	405
Kiev TV Tower, Kiev, Ukraine	1973	385
Tashkent Tower, Tashkent, Uzbekistan	1985	375
Liberation Tower, Kuwait City	1996	372

DT STRUCTURES 3 - Investigating domes	date
Draw one of the buildings that has a dome	List the materials used to construct this dome
When do you think this dome was built?	Why do you think domes are often used in religious buildings?
How has the dome been constructed? Draw the different sections	

Introduction

Following the great success of the Eden project in Cornwall, your company, *Eden Structural Designs*, has asked you, the structural design team, to produce and build a model of a design for a new visitor centre to be sited in Gloucestershire.

The centre will consist of a single dome, 10m high which will be linked with other domes in the future.

It will be a large building to house facilities such as displays, activities, exhibitions, space for conferences and lecture theatres and perhaps a smaller building acting as an entrance foyer and shop etc. The centre must be of elegant, modern design allowing a very light and spacious feel to the interior yet with an exterior appearance that will be attractive in a rural setting.

YOUR CHALLENGE

Your challenge is to design and build a model of your visitor centre Your model must be completed in**1 hour**

THE MODEL

Your model should be built to 1/10scale using the materials below: Your model should be:

- Stable it must be able to support itself without toppling
- Strong it must be able to support a 2kg weight hanging from its highest point
- Tall your dome must be at least 1m tall at the tallest point
- Size your model should be able to hold 2 people
- Design should be as stylish as possible

MATERIALS

- A4 and A3 paper
- Masking tape
- Tube rolling system
- Nuts and bolts
- Cord

TOP TIPS

A Make your structure out of connected **triangles**.

(((مم)))

It's best to start with the longer (A3) tubes and then change to the shorter (A4) tubes, though you may need to mix them in some places.

DT STUCTURES 4 - ACTIVITY 4 - The New Eden Biosphere Visitor Centre - My Evaluation

My biosphere model was: Stable – (• •) $(\circ \circ)$ (\mathbf{A}) Strong – $(\circ \circ)$ supported a 2kg weight (((°))) A Tall – 1m tall (@_@` ((دې)) A Size – Holds two people A Design $(\circ \circ)$ (\bigcirc) I think my dome is If I was to make it again I would My biosphere

DT STUCTURES - FUN FACTS 3 - World's largest domes in history

	HELD	DIAM.	COMMENT
NAME	RECORD	(M)	
1 Transumy of Atroup Muserpan Crosse	1250 BC –	14.5	Corbel dome
1.Treasury of Atreus, Mycenae, Greece	1 st century BC		
2 Tomple of Moroury Raise Italy	1 st century BC –	21.5	Concrete dome built by the Roman Empire
2. Temple of Mercury, Baiae, Italy	128 AD		
3. Pantheon, Rome, Italy	128 - 1881	43.4	Largest unreinforced solid concrete dome in the world
5. Fantheon, Rome, italy			built by the Roman Empire
4. Devonshire and Royal Hospital, Buxton, UK	1881 - 1902	46.9	Converted horse stables
4. Devolishine and Royal hospital, Buxton, OR			Slate covered frame.
5. West Baden Spring Hotel, Indiana, USA	1902 - 1913	61.0	Steel and glass dome.
6. Centennial Hall, Breslau, Poland	1913 - 1930	65.0	Reinforced concrete dome
7. Leipzig Market Hall, Germany	1930 - 1944	65.8	Reinforced concrete dome
8. V-2 Bunker, La Coupole, Wizernes, France	1944 - 1965	71.0	Reinforced concrete dome 5m tnick built by wazi
			Germany
9. Reliant Astrodome, Houston, Texas, USA	1965 - 1992	216.4	First domed sports stadium in the world
10. Georgia Dome, Atlanta, Georgia, USA	1992 –	256.0	Cable supported dome
	present day		

DT STRUCTURES 5 - Investigating bridges	date
Draw one of the bridges	List the materials used to construct this bridge
When do you think this bridge was built?	Over what gap would this bridge be best used ie. river, gorge, sea, motorway etc?
How has the bridge been constructed?	
Draw the different sections	

DT STUCTURES 5 - ACTIVITY 5 - The Bridge of the Future

INTRODUCTION

As the design team of a civil engineering company, you have been asked to design and make a model of a new lightweight footbridge to cross a small local river. The main load carrying structure of the bridge will be made from steel tubes connected together. At the point where the crossing is to be built, the river is 8 **m** wide and the banks on either side are **2 m** above the maximum river height.

The deck of the bridge across which people will walk must be at least **2 m wide** and provide headroom of at least **3 m at the centre** of the bridge for boats to navigate the river

YOUR CHALLENGE

Design and build a model of the new footbridge using the materials provided. It must be as light in weight as possible but must carry a load of at least 2.5kg at the centre of the bridge,

Your model must be completed in1 hour

THE MODEL

Your model should be built to 1/10scale using the materials below: Your model should be:

- Stable it must be able to support itself without toppling
- **Strong** it must be able to support a 2.5kg weight hanging from its highest point
- **Span** your bridge must have a span of 80cm
- Weight it must be as lightweight as possible
- Width your bridge must be 20cm wide

MATERIALS

- A4 and A3 paper
- Masking tape
- Tube rolling system
- Nuts and bolts

TOP TIPS

A Make your structure out of Square based pyramids.

(((p))) A The pyramids should be made from the longer (A3) tubes .

(((ຊາ))

Use the shorter (A4) tubes, when joining the pyramids.

DT STUCTURES 5 - Th	e Bridge of the Fut	ure - My Evaluation	date
My biosphere model was:			
Stable –		I think my bridge	
Strong – support a 2.5kg weight			
((a)) Span – 80cm		If I was to make it again I would	
Weight			
Width - 20cm wide			

My bridge

DT STUCTURES - FUN FACTS 4 - top 10 longest bridges

BRIDGE, COUNTRY	YEAR	LENGTH (Km)
Lake Pontchartrain Causeway	1969	38.422
Donghai Bridge, China	2005	32.500
King Fahd Causeway, Saudi Arabia	1986	26.000
Chesapeake Bay Bridge, USA	1964	24.140
Vasco da Gama Bridge, Portugal	1998	17.185
Penang Bridge, Malaysia	1985	13.500
Rio-Niteroi Bridge, Brazil	1974	13.290
Confederation Bridge, Canada	1997	12.900
San Mateo-Hayward Bridge, USA	1967	11.265
Seven Mile Bridge, USA	1982	10.887

DT INVESTIGATING STRUCTURES 6 - Observation Wheels	date
Draw one of the observation wheels	List the materials used to construct it
	What other features does it have?
	Why do people use these wheels?
When was it built?	

DT INVESTIGATING STRUCTURES 6 - Observation Wheels

DT STUCTURES 6 - ACTIVITY 6 - The Millennium Wheel

INTRODUCTION

The BA London Eye is a massive "viewing wheel" built to mark the year 2000 and gives passengers a panoramic view for 26 miles across the whole of London.

The wheel is a massive 135m high, weighs 1,600 tonnes and takes 30 minutes to go round. It never stops but passengers can get on and off because it goes so slowly.

Heavyweight Champion - Each of the 32 capsules weighs 10 tonnes. To put that figure into perspective, it's the same weight as 1,052,631 pound coins!

Flying High - The London Eye carries 3.5 million customers every year. You would need 6,680 fully booked British Airways Boeing 747-400 jumbo jets to move that number of fliers!

YOUR CHALLENGE

To make a model of the Millennium wheel made from paper (instead of steel) but connected in the same pattern as the real structure. Your model must be completed in1 hour

THE MODEL

The model of the Millennium Wheel is built by connecting sections made by different teams. It should be made up of square-based pyramids

MATERIALS

- A4 and A3 paper
- Masking tape
- Tube rolling system
- Nuts and bolts

date.....

Up up and away

The height of the London Eye is 135m (equivalent to 64 red telephone boxes piled on top of each other) making it the fourth tallest structure in London after the BT Tower, Tower 42 and One Canada Square in Canary Wharf.

DT STUCTURES 6 - ACTIVITY 6- The Millennium Wheel

How To make the Millennium Wheel

To make the Millennium Wheel

- Make 2 square-based pyramids using A4 tubes
- 2. Make sure all the bolts face away from you.
- Strengthen the bases by adding cross beams (404mm in length – which is a cut down A3 strut) so that they form a zig zag
- 4. Join them together at the base (you will lose one of the bottom struts when you join them)

DT STUCTURES 6 - The Millennium Wheel - My Evaluation

I think our Millennium Wheel is	404mm long
If I was to make it again I would	
	Our Millennium Wheel

DT STUCTURES - FUN FACTS 5 - Top ten observation wheels

	BUILT	HEIGHT (m)	DIAM. (m)	ROT. SPEED	CAPSULES/ PASSENGERS	PASSENGERS HOUR
NAME				(mins)		
1.The Great Beijing Wheel, China	2009	208	193	20	48 X 40	5760
2. The Singapore Flyer, Singapore	2008	165	150	37	28 x 30	1362
3. Star of Nanchang, China	2006	160		30	60 x 8	960
4. The London Eye, United Kingdom	1999	135		30	32 x 25	1600
5. Changsha Ferris Wheel, China	2004	120	99			
6. Southern Star Observation Wheel,	2008	120		30	21 x 20	840
Melbourne, Australia						
7. Zhegnzhou Ferris Wheel, China	2003	120				
8. Skydream Fukuoka, Japan	2002	120	112			
9. Diamond & Flower Ferris, Tokyo, Japan	2001	117	111	17	68 x 6	1440
10. Palette Town Ferris Wheel, Tokyo, Japan	1999	116	100	16		

DT STRUCTURES 7 - ACTIVITY 7 - Spaghetti Bridge

Objective

We are going to investigate the difference between the strength of bridges made from flat and round building materials.

What You Need

- \circ 8 marshmallows
- 18 pieces of raw spaghetti
- o 4 pieces of raw linguine (spaghetti and linguine should be same diameter)
- $_{\rm O}$ 1 paper clip
- 1 envelope and a scissors (to make hanging basket for coins)
- o approximately 40 coins
- paper and pencil to record observations

To Do and Observe

- 1. Cut off the lower corner of the envelope for your coin basket.
- 2. Unbend one end of the paperclip to make a hanger and poke it through the top of your coin basket.
- 3. Construct two pyramids of equal size with your marshmallows and spaghetti.
- 4. Connect the pyramids with a single strand of spaghetti.
- 5. Hang your coin basket from piece of spaghetti.
- 6. Add coins one at a time to the
- 7. Record the number of coins in the basic
- at the time the bridging spaghetti breaks.8. Repeat the experiment three more times to get an average number of pennies needed to break the spaghetti bridge.
- 9. How do you think the results will change if you use linguine for the bridge instead?10. Test your hypothesis by repeating the experiment with the linguine as the bridge.
- 11. Was the round (spaghetti) or flat (linguine) shape stronger?

	Number of coins held by spaghetti		Number of coins held by linguine		
Av:			Av:		

What's Going On

Circles are among the strongest shapes in nature. External and internal stress distributes itself evenly roughout a round structure.

baghetti has a shape like a cylinder, while linguini is shaped like a flattened rectangle. A piece of spaghetti has the same strength in any direction it is bent. Linguini will bend more easily in one orientation than another.

Be sure to experiment using pieces of spaghetti and linguini with similar diameters. And try orienting each piece of linguini in the same direction; this will produce a more uniform strength throughout the structure.

DESIGN TECHNOLOGY - STRUCTURES - interesting websites

Petronas Towers Empire State Building

DT WORDSEARCH STRUCTURES * useful words * useful words *

7 S F F Η Ν \cap \bigcirc Ρ R М Ρ R F Ν Μ Ν Ν G Ο М Η F А F R 0 Т Т С D () Ο S F F R Η F F F Α F F R 77 F F Ρ Μ Η Ρ Η \cap F А 3 R V 3 R В Ρ S E 4 ()Ο Η Ρ Τ. Η Ά F F F F В Ρ Ρ Ν Т Т R F Ν J М М Ο S R S R B S F Ν K Α F Α D ()E Α S Ν С Ν F F S B R F Т Ν 'T B М F В F Α М Α Τ. Ν \cap R T, B F F S Ν M Α R Ρ F \cap Х G F ਜ B R М TT R S Х ٠T Ά Ν R Т М F Ν S Ρ Ρ E R \bigcirc G А Ν Ν \bigcirc M Ν

3 DIMENSIONS ARCH 2 DIMENSIONS A4 PAPER BEAM **BIOSPHERE** BRIDGE CABLE STAYED CANTILEVER **COMPRESSION CN TOWER DESIGN TECHNOLOGY 2007** DODECAHEDRON DOME EDEN PROJECT **GREAT BEIJING GUMDROPS HEXAGON** I OAD MII AU MILLENNIUM NUTS AND BOLTS **OBSERVATION OCTAGON** PANTHEON PENTAGON PONTCHARTRAIN **PYRAMID** RECTANGLE **SPAGHETTI STRUCTURES** SQUARE BASED SUPPORT **SUSPENSION TAPEI 101 TENSION** THE GHERKINTOWER TRIANGLE WHEEL

STRUCTURES

How many words of 3 letters or more can you make out of the word STRUCTURES. You can only use the letters the same number of times as they appear in the word.

S T R U C T U R E S

ACROSS

- The supports at each end of the bridge. 1
- 4 The act of twisting.
- 6 The solid surface for the piers and abutments to rest upon.
- 7 Beams extend from each end and hold up a suspended span.
- The act of pressing or pushing. 10
- 12 A rigid triangular framework.
- 13 A person who designs and constructs structures and machines.
- 15 A bridge where the load is transferred along the curved section to the abutment or pier.
- 16 The part that holds up the bridge.
- 17 The platform extending horizontally, often supporting the roadway.
- Bridges designed so that a portion can move to allow large 18 vehicles to pass underneath.

DOWN

- Bridge with tall towers supporting cables that runs the entire 2 length of the bridge.
- 3 The part of the bridge that rests on the foundation.
- 5 Portion of the bridge between two supports.
- 8 The act of stretching.
- The type of bridge where piers support beams that support the 9 spans of concrete.
- Bridges similar to Suspension Bridges except the cables are 10 connected directly to the roadway.
- 11 the vertical supports used to keep the bridge from sagging.
- A horizontal beam used for support. 14

